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Dynamic Behavior of Two Collinéar
Anti-plane Shear Cracks in a Piezoelectric
Layer Bonded to Dissimilar Half Spaces*

Zhen-Gong ZHOU** and Biao WANG**

In this paper, the dynamic behavior of two collinear anti-plane shear cracks in a
piezoelectric layer bonded to dissimilar half spaces was investigated for the imperme-
able crack face conditions. The cracks are vertical to the interfaces of the pi-
ezoelectric layer. By means of the Fourier transform, the problem can be solved with
two pairs of triple integral equations. These equations are solved by use of the
Schmidt method. This process is quite different from that adopted in previously.
Numerical examples are provided to show the effect of the geometry of the cracks, the
piezoelectric constants of the material and the frequency of the incident wave upon the

dynamic stress intensity factor of the cracks.
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1. Iﬁtroduction

It is well known that piezoelectric materials
produce an electric field when deformed and undergo
deformation when subjected to an electric field. The
coupling nature of piezoelectric materials has attract-
ed wide applications in electric-mechanical and elec-
tric devices, such as electric-mechanical actuators,
sensors and structures. When subjected to mechanical
and electrical loads in service, these piezoelectric
materials can fail prematurely due to defects, e.g.
cracks, holes, etc., arising during their manufacture
process. Therefore, it is of great importance to study
the electro-elastic interaction and fracture behaviors
of piezoelectric materials. Moreover, it is known that
the failure of solids results from the final propagation
of the cracks, and in most cases, the unstable growth
of the crack is brought about by the external dynamic
loads. So, the study of the dynamic fracture
mechanics of piezoelectric materials is much more
urgent in recent research.

Recently, the dynamic response of piezoelectric
materials and the failure modes has attracted more
and more attention from many researchers”~®. A
finite crack in an infinite piezoelectric material strip
under anti-plane dynamic electromechanical impact
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was investigated with the well-established integral
transform methodology®. Axisymmetric vibration of
a piezo—composite hollow cylinder was studied in Ref.
(2). The dynamic representation formulas and fun-
damental solutions for piezoelectricity had been
proposed earlier in Ref.(3). The dynamic response
of a cracked dielectric medium in a uniform electric
field was studied in Ref.(4). The scattering of anti-
plane shear waves by a finite crack in piezoelectric
laminates was also carried out in Ref.(5). Most
recently, an infinite piezoelectric ceramic with imper-
meable crack-face boundary condition under arbi-
trary electro-mechanical impact was considered in
Ref.(6). The response of piezoelectric bodies disturb-
ed by internal electric sources was investigated in Ref.
(7). The impermeable boundary condition on the
crack surface was widely used in the works®»®-08_ n
particular, control of laminated structures including
piezoelectric devices was the subject of research in
Refs.(14) - (18). Many piezoelectric devices comprise
both piezoelectric and structural layers, and an under-
standing of the fracture process of piezoelectric struc-
tural systems is of great importance in order to ensure
the structural integrity of piezoelectric devices®®-@b,

In the present paper, we consider the anti-plane
shear problem for two cracked piezoelectric. layer
bonded to two half spaces for the impermeable crack
face conditions. The traditional concept of linear
elastic fracture mechanics is extended to include the
piezoelectric effects. The two half spaces have the
same properties and the piezoelectric laminate is
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subjected to combined mechanical and electrical
loads. The cracks are situated symmetrically and
oriented in the direction vertical to the interfaces of
the layer. The interaction between two collinear
symmetrical cracks subjects to anti-plane shear
waves in piezoelectric layer bonded to two half spaces
was investigated using some different approach by a
new method, namely Schmidt method®?. It is a simple
and convenient method for solving this problem.
Fourier transform is applied and a mixed boundary
value problem is reduced to two pairs of triple inte-
gral equations. In solving the triple integral equa-
tions, the crack surface displacement and electric
potential are expanded in a series using Jacobi’s
polynomials. This process is quite different from
those adopted as mentioned above and Refs.(23) -
(31). The form of solution is easy to understand.
Numerical calculations are carried out for the stress
intensity factors.

2. Formulation of the Problem:

Consider a piezoelectric layer that is sandwiched
between two elastic half planes: with an elastic
stiffness constant cfi. Quantities in the half spaces
will subsequently be designated by superscript £. The
piezoelectric materials layer of thickness 2/ contains
two impermeable cracks of length /=1—5 that are
vertical to the interfaces, as shown in Fig. 1. 2b is the
distance between the cracks (The solution of the
piezoelectric layer of width 2% containing two col-
linear Griffith cracks of length «-b can easily be
obtained by a simple change in the numerical values of
the present paper. a>b>0). The piezoelectric bound-
ary-value problem for anti-plane shear is consider-
ably simplified if we consider only the out-of-plane
displacement and the in—plane electric fields. Let w be
the circular frequency of the incident wave. In what
follows, the time dependence of all field quantities
assumed to be of the form exp(—jwt) will be suppress-
ed but understood. We further suppose that the two
faces of the crack do not come into contact during
vibrations. The constitutive equations can be written
as

T = Caat,z T €159, (D)
Di=eswr—end,e ( 2)
L= chiws ‘ (3)
To= chwpy ‘ (4)

where 7, D. (k=x, y) are the anti-plane shear stress
and in-plane electric displacement, réspectively. Cas,
eis, €11 are the shear modulus, piezoelectric coefficient
and dielectric parameter, respectively. w and ¢ are
the mechanical displacement and electric potential.
Tis, Tyz and w” are the shear stress, and the displace-
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Fig. 1 Cracks in a piezoelectric layer body under
anti—plane shear

ment in the half elastic spaces, respectively. The anti-
plane governing equations are® :

c44VZw + 615v2¢:‘0827/{)/812 ( 5 )
emVZw - Euvzfi:S:O ( 6 )
V2w = o *w* /ot* (7)

where V?=0*/0x*+ 5°/0y* is the two dimensional La-
place operator. pis the mass density of the pi-
ezoelectric materials. ©F is the mass density of the
elastic materials. Body force, other than inertia, and
the free charge are ignored in the present work.
Because of the assumed symmetry in geometry and
loading, it is sufficient to consider the problem for 0<
x<oo, <y <o only.

A Fourier transform is applied to Eqgs.(5), (6)
and (7). Assume that the solutions are

w(z, y, t)

:% L‘WA:(S)"W cos(sx)ds

+% /owA2<5> cosh(nx) sin(sy)ds (8)
wE(.Z', Y, t):% ./(;mc(s>e—7zx Sin(é‘y)ds ( 9 )

2
where n=v's*—(w/csu)?, csu=+ pfp, #:CMJF%SI, 72 =
V¥ —(w/csn)?, cda=+ chfo®, Ai(s), Axs) and C(s) are

unknown functions, and a superposed bar indicates the
Fourier transform .throughout the paper, e.g.,

f(s):[:f(x)e’is”dx (10)
Inserting Eq.(8) into Eq.(6), it can be assumed that
Pz, v, )= w(x, y, t)
€11

=% A.mBl(s)e‘sy cos(sx)ds

+% ﬁwB'z(S) cosh(sz) sin(sy)ds (11) -

where Bi(s) and Ba(s) are unknown functions.
As discussed in Refs.(4), (5), (32), the bound-
ary conditions of the present problem are :
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wlx, 0, )=—mn, b<|z|<1 : (12)

Dy(x,0, t)=—Do, b=|z|<1 , (13)
w(z, 0, )=¢(x, 0, )=0, |x|<b, |x|>1 : (14)
Ll Th oy )=te{xh y,t), . ' (15)
w(Eth,y, t)=w*(Thy,t) : (16)
DAxh,y, t)=0 : a7
w(z, y, t)=w(x, y, t)=¢(x, y, 1)=0, for yx?+y* - oo (18)

In this paper, the wave is vertically incident and we only consider positive o and Do. The boundary
conditions can be applied to yield two pairs of triple integral equations :

—27;'/0.50141(3) cos(sz)ds=0, 0<x<b, h=x>1 | a9

%ﬁm?’u‘h(s) cos(sx)ds:% j)‘wSAz(S> COSh(ylx)dS‘f'%(Z'o—l-el;—fO)’ b<r<l o0
and |

%./O‘OOBI(S> cos(sx)ds=0, 0<x<b, h=x>1 : -

%./O-WSBI(S> cos(sx)ds:% jo‘msBz(s) cosh(sx)ds—%, b<xr<l (22)

The relationships between the functions Ai(s), Ax(s), Bi(s), Bx(s) and C(s) are obtained by applying the
Fourier sine transform® to Eqs.(15) - (17) :

. _ 2t (=sin(sh)s— r() cos(sh)
As(D] 71 sinh(y14) + 1172 cosh( 71h)]— . f - (S)+ 2 Ails)ds (23)
C(H)e ™[y sinh(y1h) + 7 cosh(ri/)] 22% fm coshl7,(£)%] sm(sh)s;? 7)129 Zsmh[ n(t)h] cos(sh) Ai(s)ds
‘ 0 717 (s)+¢ ‘
(24)
- E ‘
B(t) sinh(¢h) :%—j). WstzBl(ys) sin(sh)ds, ulz% ' (25)
To determine the unknown functions Ai(s), Bi(s), Bu(s)=&(s, 0, t)ﬁ e w(s 0)
the above two pairs of triple integral Eqs.(19) - (22)
must be solved. :7?;:0( ﬁan)QnGn(S) ]n+1< 1— 5 b) (31)
3. Solution of the Triple Integral Equation F(n e >
The Schmidt method®? is used to solve the triple Qn=2{m——F—" (32)
integral Egs.(19) - (22). The displacement w and the n
electric potential ¢ can be represented by the follow- ) — (=1)> COS( > n=0,2,4,6,
ing S;r(ljso ) R 17" sin( 54 b) n=1,3,5,7,
1-b 1+b6\2\ 7 c (33)
- r——F— r——a—
=SV P 77) 1_? 1 l—g /) where I'(x) and Ja(x) are the Gamma and Bessel
=0 5 (T) functions, respectively.
for b<r<1, y—0 (26) Substituting Egs.(30) and (31) into Egs.(19) -
w(z, 0, )=0 fz)r 2<b 2> y=0 27) (22), respectively, the Egs.(19) and (21) can be auto-

matically satisfied, respectively. Then the remaining
Eqgs.(20) and (22) reduce to the form after integration
with respect to x in [6, x], respectively.

#(x,0, 1)
1
L_1tb <x_1+b>2 }
1

—S e 2 [ 2 ) .
P % <1_5£>2 2 anQn f *l[f(s)+1]Gn(s)fn+1< 7 >[sm(sx)
for b<x<1,y=0 (28) —sin(sb)]ds ‘
¢(z, 0, £)=0, for x<b, x>1,y=0 (29) :LT0(1+ Dz — b)+1 i 200
where @ and b. are unknown coefficients to be deter- .,
mined and P&*Y(x) is a Jacobi polynomial®®. The X / s’[sinh(y12) — smh(ylb)]
Fourier transformation of Egs.(26) and (28) is®*: ai(s) 5
A(s)=(s, 0, 1) < [ Gutm (152
= 2 annGn(S) ]n+1< 1 2 b ) (30)
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w18in(yh) = y:(s) i cos(nh) dy G
a:(s, 17

2 (r—220,)0n [ Gul)na(s15L)
X [sin(sz)— sm(sb)]ds
a0+ 2 3 (6—La,)Qn

[

X/ Gn(?)]ﬂ+1< 9 >(S;n§|_77\51"l2>> dn (35)

where A= ilSDO", f(s)= 71; , qi(s)=nlr sinh(n7)

+ay2 cosh(nh)], ¢(s, 7)=r*(n)+s>

For a large s, the integrands of the double semi-
infinite integral in Eqs.(34) and (35) almost all have
exponential forms except for the singularities in the
integrands of the integrals in Eq.(34). The zero points
of the functions ¢i(s) and g:(s, 7) are poles of the
integrals in Eq.(34). The technique merely deforms
the contour of integration below the real s-axis so
that no poles occur on the path of integration. These
zero points of ¢i(s) and (s, 7) not only depend on the
width of piezoelectric layer and the frequency of the
incident wave, but also depend on the properties of the
materials. These poles represent the addition of a free
wave solution that will ensure that the scattei’ing
wave solution does not contain standing waves®®.
Note that the integrals in Eq.(34) will also have
principle value integrals. Thus the double semi-
infinite integral in the Eqs.(34) and (35) can be
evaluated numerically by Filon’s method®®.. The
semi-infinite integral in Egs.(34) and (35) can be
modified as Ref.(33)

L1+ 7 w572 ) cos(s 152 ) sin(sa)as

“TarD
(g2 e
1;b+\/ 1+b 12b>2}n+1
—smw ()

+£m%f(8)fn+1<js lgb > cos(s 1; b > sin(sx)ds
(36)
L0476 (5152 ) sin( 152 ) sin(sa)ds

)]

:—2(n1+1) cos[(nJrl)sin‘I( -

JSME International Journal

623

(ﬂ)’1+1 <(n—|—1)7r>

1+b+\/ 1+b 12b>2}”+1
+'/0‘ ?f(s)]n+l<$' 5 —b > sin(s H?: b > sin(sz)ds
37

For a large s, the integrands of the semi-infinite
integral in the Eqgs. (36) and (37) almost all 1/s®>. Thus
the semi-infinite integral in Eqgs.(34) and (35) can be
evaluated directly. Equations (34) and (35) can now
be solved for the coefficients @» and b5 by the Schmidt
method®. For brevity, the Eq.(34) can be rewritten
as (the Eq.(35) can be solved using a similar method
as following) |

gﬂanEn(x) = U(.Z'),

where E.(x) and U(x) are known functions and
coefficients a» are unknown and will be determined. A
set of functions P.(x) which satisfy the orthogonality
conditions

1 1
A Pul2)Fu(2)dze=NoSwm, No= ﬁ Pz)dx

b<zx<l . : (38)

(39)
can be constructed from the function, E.(x), such that
Poa) =341 ) W

where M;; is the cofactor of the element di of Da,
which is defined as

[ doo, dor, doz, **+, don ]
dlo, dll, dlz, oty din
dZO, le, dZZ, ‘et dZn
Dnz ............................

 do= [ Ed2)Efz)dr

(41)
Using Eqgs.(38) - (41), we obtain
- Mnj '
an_]gij‘ ij (42)
1 1
with Qj:—ﬁjb. U(x)P{x)dx (43)

4. Intensity Factors

We can determine the entire stress field and the
electric displacement from coefficients @ and b.. It is
of importance in fracture mechanics to determine
stress 7wz and the electric displacement Dy in the
vicinity of the crack’s tips. zyz and Dy along the crack
line can be expressed respectively as
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Tyz(l', 0, t>_ — 2 ann{Aw[f(s) +1] Gn(S)]nH(S%) COS(.I'S)dS
2 (" cosh(yix)s? = — b\ 7 sin(nh)— y:(s) i cos(7h)
./ ’}’1 Sinh( 71h) + 1y COSh( ')’lh)] s .A‘ Gﬂ(”)]nH( 2 ) [7/12(77)+S ] @ }

_2es 2 <bn—@an>Qn[/mG’l(s)]”“<s 1;

T n=0

< [ G352 S 4]

Dy(zx, 0, t)=% go(é“ubn_elsdn)in;/; Gn(8)Jni1 (s L

>51n(77h) J }

X’/O‘an(V)an(?? (7; +s )

b)cos(xs)ds——f cosh(sx)s

Slnh(sh)
(44)
b 2 (=cosh(sx)s
2 >cos(xs)d 7 Jo sinh(sh) &
(45)

Observing the expression in Egs.(44) and (45), the singular portion of the stress field and the singular portion
of electric displacement can be obtained respectively from the relationships®® :

b > cos(sx) :%{cos[s< 1; b

b ) cos(sx)=%{sin{s< HZ— b
cos[# sin™'(b/a)]

a” sin(nn/2)

cos<s 1t
2

Sin<s 1+
2

j).wfn(sa) cos(bs)ds=

=l =21

a>b

sin[z sin”'(b/a)]
Jya—b* ’
a” cos(nn/2)
JORP—[b+/ 0~ 1

'[ofn(sa) sin(bs)ds=

3

—)[reoelo(£55+2) |}
—a)rsins( 1+

a>b

b>a

b>a

The singular portion of the stress field and the singular portion of electric displacement can be expressed

respectively as follovving

r= _7 nZO(canr 615bn) Qan<b x) (46)
D=L S\ (enbu—ewan) Qu(b, 2) (47
where Hx(b, x)=—F\(b, x, n), n=0,1,2,3,4,5, - (for 0<x<b),
H(b, x)=(—1)""Fy(b, x, n), n=0,1,2,3,4,5, - (for 1<x),
2(1_ b)n+1
F by ’ =
b, 2, ) JA+bo—2x)—Q—0)P[1—b—2x+/(0+b—2x)*—(1—b)* ]"*
E(b, x, n)= , 2(1=)"
J@x—1-b—(1—-b)[22—1-b+/(2x—1-b)"—(1—0)" |"** 7
.At the_ left tip of the right crack, we obtain the stress KP —hm m D= /
intensity factor K; as ‘ (1 b)
K.=limy2x(b—zx) -r=, /ﬁi(amn X ZO(_I)”(elsan—Enbn)Qn (61)
Z-b- il n=0 n=

+ elsbn) Qn (48)
At the right tip of the right crack, we obtain the stress
intensity factor Kz as

KR:}TiERv 2n(x—1)-r=,/ ﬁ ,go(—l)n(cudn

+ elsbn) Qn . (49)
At the left tip of the right crack, we obtain the electric
displacement intensity factor K? as

Kf=liﬁr£~/27r(b—x) -D

:,/ﬁ ni:‘.o(eman—enbn) Qn (50)

At the right tip of the right crack, we obtain the
electric displacement intensity factor K% as

Series A, Vol. 45, No. 4, 2002

5. Numerical Calculations and Discussion

This section presents numerical results of several
representative problems. From the references®?-¢9),
it can be seen that the Schmidt method is performed
satisfactorily if the first ten terms of the infinite series
of Eq.(38) are obtained. The solution of two collinear
cracks of arbitrary length a-b can easily be obtained
by a simple change in the numerical values of the
present paper (a>b>0), i.e., it can use the results of
the collinear cracks of length 1—&/a and the strip
width %/a in the present paper. The solution of this
paper is suitable for the arbitrary length two collinear
cracks in the piezoelectric layer bonded to dissimilar

JSME International Journal
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Fig. 2 Stress intensity factor versus w/css for A=0.2, h=
1.1, #=0.1 (Aluminum/PZT-4/Aluminum)

1.8}
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02t
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0 05 1 15 2 25 3
0/ cgy

Fig. 3 Stress intensity factor versus w/csy for A=0.2, A=
2.0, 5=0.1 (Aluminum/PZT-4/Aluminum)

1.7
1.3
0.9t
K/roo'5
0.1
03}
Q7
0 05 1 15 2 25 3
A

Fig. 4 Stress intensity factor versus 4 for A=1.1, w/css=
0.5, b=0.1 (Aluminum/PZT-4/Aluminum) -

half spaces. All applications were focused on two
cracked piezoelectric layer bonded to half planes.
The piezoelectric layer is assumed to be the commer-
cially available piezoelectric PZT-4 or PZT-5H, and
the half planes are either aluminum or epoxy. The
material constants of PZT-4 are cua=2.56 (10" N/
m?), es=12.7(c/m?, en=64.6(x10"c/Vm?®), o=
7500 kg/m®, respectively. The material constants of
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K/t 1.4
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11 12 13 1;4 1.5
A

Fig. 5 Stress intensity factor versus A for 2=4.0, w/csz=
0.5, 5=0.1 (Aluminum/PZT~4/Aluminum)

1.4
1.? \KL I,
K/, 0.8
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04

0.2 : : :
01 03 05 07 09
b

Fig. 6 Stress intensity factor versus b for w/css=0.5, b=
1.1,.A=0.2 (Aluminum/PZT-4/Aluminum)

K/,

2.2
1.8}

K2/D,

01 03 05 07 09
b
Fig. 7 Electric displacement intensity factor versus b for
w/esu=05, h=1.1, A=0.2 (Aluminum/PZT-4/Alu-
minum)

PZT-5H are cu=2.3(Xx10"N/m?), es=17.0 (c/m?,
en=150.4 (X107 ¢/Vm?), p=7 500 kg/m®. The mate-
rial constants of aluminumi are c4=2.65 (X10" N/m?)
and p=2 706 kg/m®. The material constants of epoxy
are ¢£=0.176 (X 10 N/m?) and po=1600 kg/m*. The
results of the present paper are shown in Figs. 2 to 13,
respectively. Form the results, the following observa-
tions are very significant :

(i) The results show that the dynamic field will

Series A, Vol. 45, No. 4, 2002
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1.8
K/,
0.6
K/t
0.2
01 03 05 07 09
b

Fig. 8 Stress intensity factor versus & for w/csu=0.5, h=

3.0, A=0.2 (Aluminum/PZT-4/Aluminum)

1.8
1
K,
08 ko1,
0.2 —
01 03 05 07 09
b

Fig. 9 Electric intensity factor versus & for w/csu=0.5, &

=50, A=0.2 (Aluminum/PZT-4/Aluminum)

K/t

06l K, /T,

0.2 : . -
01 03 05 07 09

b

Stress intensity factor versus b for A=1.1, w/css
=0.5, 1=0.2 (Aluminum/PZT~4/Aluminum)

Fig. 10

impede or enhance crack propagation in a pi-
ezoelectric material at different stages of dynamic
electromechanical load. The dynamic stress intensity
factors not only depend on the crack length, the
electric loading and the frequency of the incident
! wave, but also depend on the properties of the mate-
rials. Therefore the crack extension may be retarded
by adjusting the loading conditions, parameters of the
materials and the incident wave frequency.

(ii) The dynamic stress intensity factors tend to
increase with the frequency reaching a peak and then

| Series A, Vol. 45, No. 4, 2002

a

01 03 05 07 09

b

Fig. 11 Electric displacement intensity factor versus
b for h=11, w/cst=05, A=0.2 (Epoxy/PZT-4/

Epoxy)
1.4+¢
/T
1l
K/,
0.6} .
0.2 . + .
0.1 0.3 05 07 0.9

b
Fig. 12 Stress intensity factor versus & for 2=1.1, w/cs:
=0.5, =0.2 (Aluminum/PZT-5H/Aluminum)

3.5¢
2.7t
11¢

0.3 . . .
01 03 05 07 09

b

Fig. 13 Electric displacement intensity factor versus b
for h=1.1, w/csx#=0.5, =02 (Aluminum/PZT-
5H/Aluminum) ‘

to decrease in magnitude. However, when the fre-
quency @/csy >2.5, the dynamic stress intensity factors
tend to increase with the frequency again as shown in
Figs. 2 and 3. This phenomenon is brought up by the
free wave. Here, the free wave is created by the
singularities in the integrands of the integrals in Eq.
(34). So the stress field can reach the minimum value
by changing the frequency of the incident waves.
(ili) The stress intensity factor becomes small
with increase of the electric loading as shown in Figs.
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4 and 5; in other words, the electric field will reduce
the magnitude of the stress intensity factor. This is
due to the coupling between the electric and the
mechanical fields. The intensity of the stress field can
be reduced by increasing the intensity of the electric
field as shown in Figs. 4 and 5.

(iv) The stress intensity factors at the inner crack
tips are bigger than those at the out crack tips for %
>3.0 as shown in Fig. 9. However, the stress intensity
factors at the inner and outer crack tips are almost
overlapped 2=1.1, 56=0.5 as shown in Figs. 6, 8, 9 and
12 except for in Fig. 10. In Fig. 10, Kz/m is bigger than
Ke/y for 0.1<6<0.7. These phenomena may be
caused by the coupling between the mechanical and
the electric field and by the free wave as mentioned in
(ii). Another reason, the material constant cfi of
Epoxy is very small. For the electric displacement
intensity factors, K#/Ds is bigger than K£/Do for 0.1<
b<0.4. These phenomena may be also caused by the
same reasons as mentioned above.

(v) The dynamic response of the electric field is
independent of the external mechanical load. It is
coherent with the applied dynamic electric load.

(vi) The behavior of the stress and the electric
field near the crack tips will stay steady with increas-
ing of the width of piezoelectric material layer as
shown in Fig. 5.

(vii) The effects of the two collinear cracks
decrease with increasing of the distance between the
two collinear cracks as shown in Figs. 6 to 11. The
increasing of the crack density will enhance the crack
initiation in a piezoelectric material.

6. Conclusions

We developed an electro-elastic fracture
mechanics analysis to determine the singular stress
and electric fields near the crack tip for a piezoeleétric
laminate having two finite cracks vertical to the inter-
face under longitudinal shear waves for the imperme-
able crack face conditions. The traditional concept of
linear elastic fracture mechanics is extended to
‘include the piezoelectric effects and the results are
expressed in terms of the dynamic stress intensity
factors. Furthermore, the effect of the geometry of
the interacting cracks, the material constants and the
frequency of the incident wave upon the dynamic
stress intensity factors of the crack are examined and
their influence discussed. This study reveals the
importance of the electro-mechanical coupling terms
upon the resulting of dynamic stress intensity factors.
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